現代数学の系譜11 ガロア理論を読む8at MATH
現代数学の系譜11 ガロア理論を読む8 - 暇つぶし2ch371:現代数学の系譜11 ガロア理論を読む
14/03/02 14:15:40.54
これ面白いね

URLリンク(faculty.ms.u-tokyo.ac.jp)
2次元球面と3次元球面 坪井俊 数理・情報一般 数学の現在・過去・未来 東大 2010
URLリンク(faculty.ms.u-tokyo.ac.jp)

3次元球面
「2次元複素ベクトル空間と3次元球面」
「ホップ・ファイブレーション」
「ポアンカレ予想の主張、幾何化予想、ペレルマンの方法」

372:現代数学の系譜11 ガロア理論を読む
14/03/02 15:05:54.11
>>371
上で紹介されているが、下記ビデオ4次元が面白いね

URLリンク(faculty.ms.u-tokyo.ac.jp)
DIMENSIONS 日本語版のページ

DIMENSIONSは,Jos Leys, Etienne Ghys, Aurelien Alvarezが作り,Creative Commonsライセンスに従って提供している数学の啓蒙のためのビデオです.

DIMENSIONSは2010年度フランス数学会ダランベール賞を受賞しました.

373:132人目の素数さん
14/03/03 23:03:35.39
ガロア理論が一個も出てこないんですけど

374:132人目の素数さん
14/03/04 13:07:55.71
>>370
代案はいらん

375:132人目の素数さん
14/03/06 23:03:51.50
台湾バナナ

376:現代数学の系譜11 ガロア理論を読む
14/03/08 10:59:19.38
>>373
再帰だよ(自分にもどる)

377:現代数学の系譜11 ガロア理論を読む
14/03/08 11:02:30.13
これなんか面白そうだな

URLリンク(sites.google.com)
立教大学数理物理学研究センター
これまでのセミナー (2013年度)

第1回(2013年5月01日 16:40-18:10)

講師: 江口徹 氏 [立教大学]
題目: 超弦理論とムーンシャイン現象
概要:
K3曲面は超弦理論のコンパクト化で基本的な役割を果たす事が知られているが,我々は最近その位相的不変量である楕円種数を調べて面白い事に気がついた。
K3曲面上の超弦理論は N=4 共形不変性を持つため楕円種数をN = 4 共形代数の指標で展開してその展開係数を調べると、これらがちょうどマシュー群M24と呼ばれる離散群の規約表現の次元の和に分解できる事が分かった。
これはモジュラーJ関数のq展開の係数がモンスター群の規約表現の和に分解されるいわゆるMonsterous Moonshine と呼ばれる現象に良く似ている。
このため我々の見つけた現象はMathieu moonshine と呼ばれるようになった。Monsterous moonshine は70年代後半に発見され10数年かけて数学者によって解決された。
Mathieu moonshine の現象はその起源や意味がまだ全く不明である。最近は拡張されて Umbral moonshine, Enriques moonshine なども見つかっている。このセミナーではこれらの新しい moonshine 現象を解説する。

378:現代数学の系譜11 ガロア理論を読む
14/03/08 20:17:08.17
>>376
補足

1.自分が書けってこと
2.もともと2ちゃんねるの存在自身、そんな専門的な場じゃない。素人の気楽なカキコ前提
3.脱線、スレチ、荒らし・・・なんでもありの玉石混淆が前提だ
4.このスレも例外ではない。自分の書きたいことを書け! おれも同じだよ!

379:現代数学の系譜11 ガロア理論を読む
14/03/08 21:48:00.56
ほい
URLリンク(www.kurims.kyoto-u.ac.jp)
望月新一 最新情報
2014年02月20日  ・(出張・講演)本日、数理研の数論セミナーで行なわれた講演のスライドを掲載。
URLリンク(www.kurims.kyoto-u.ac.jp)
出張・講演
[15] 宇宙際タイヒミューラー理論への誘(いざな)い 《3時間版》 (京都大学数理解析研究所 2014年02月) PDF
URLリンク(www.kurims.kyoto-u.ac.jp)(3jikanban).pdf

380:132人目の素数さん
14/03/08 22:31:48.75
自演アゲ

381:現代数学の系譜11 ガロア理論を読む
14/03/08 23:08:55.37
自演アゲか・・

しかし、自分としては、ここは天下のメモ帳よ
書けば自分の記憶に残るし、記録にも
なにより勉強になる
(間違ったことは書けない(間違えばさすがに突っ込みがあるだろう))
ここに書く意味はそういうことよ

君もそうしたらどうだ?

382:現代数学の系譜11 ガロア理論を読む
14/03/09 06:15:39.90
>>377
これ、よく纏まっている
URLリンク(ja.wikipedia.org)
モンストラス・ムーンシャイン

数学では、モンストラス・ムーンシャイン、もしくはムーシャイン理論は、1979年にジョン・コンウェイ(John Conway)とシモン・ノートン(英語版)(Simon Norton)により名づけられ、
モンスター群 M とモジュラー函数、特にj-不変量(j-invariant)との間の予期せぬ関係を記述することに使われた。
今では、背後にあるモンストラス・ムーンシャインが、対称性としてモンスター群を持つある共形場理論であることが知られている。
コンウェイとノートンによって考案された予想は、リチャード・ボーチャーズ(Richard Borcherds)により1992年に、弦理論や頂点作用素代数(英語版)(vertex operator algebra)の理論や一般化されたカッツ・ムーディ代数(英語版)から証明された。

目次

1 歴史
2 モンスター加群
3 ボーチャーズの証明
4 一般化されたムーンシャイン
5 量子重力との予想される関係
6 マチュームーンシャイン
7 何故「モンストラス・ムーンシャイン」なのか?
8 脚注
9 参考文献
10 外部リンク

383:現代数学の系譜11 ガロア理論を読む
14/03/09 06:24:19.10
英文だが
URLリンク(home.mathematik.uni-freiburg.de)
Mathieu moonshine

By classical results due to Nikulin, Mukai, Xiao and Kondo in the 1980's and 90's, the finite symplectic automorphism groups of K3 surfaces are always subgroups of the Mathieu group M24.
This is a simple sporadic group of order 244823040. However, also by results due to Mukai, each such automorphism group has at most 960 elements and thus is by orders of magnitude smaller than M24.
On the other hand, according to a recent observation by Eguchi, Ooguri and Tachikawa, the elliptic genus of K3 surfaces seems to contain a mysterious footprint of an action of the entire group M24:
If one decomposes the elliptic genus into irreducible characters of the N=4 superconformal algebra, which is natural in view of superconformal field theories (SCFTs) associated to K3,
then the coefficients of the so-called non-BPS characters coincide with the dimensions of representations of M24.

In joint work with Dr. Anne Taormina, first results of which are presented in
Anne Taormina, Katrin Wendland, The overarching finite symmetry group of Kummer surfaces in the Mathieu group M24; JHEP 1308:152 (2013); arXiv:1107.3834 [hep-th]

we develop techniques which eventually should overcome the above-mentioned "order of magnitude problem":
For Kummer surfaces which carry the Kahler class that is induced by their underlying complex torus, we find methods that improve the classical techniques due to Mukai and Kondo,
and we give a construction that allows us to combine the finite symplectic symmetry groups of several Kummer surfaces to a larger group.
Thereby, we generate the so-called overarching finite symmetry group of Kummer surfaces, a group of order 40320, thus already mitigating the "order of magnitude problem".

URLリンク(www.maths.dur.ac.uk)
Mathieu Moonshine

384:現代数学の系譜11 ガロア理論を読む
14/03/09 07:36:37.31
>>372
これも、面白かった
URLリンク(www2.odn.ne.jp)
数理物理への誘い7―最新の動向をめぐって 河東泰之 編 
抜粋
第2話 数理物理学(繰り込み群)的視点からみたペレルマン理論 (伊東恵一)  
3 シグマ模型とその仲間たち
  3.1 スピン模型たちとその連続極限
  3.2 発散項と繰り込み
  3.3 繰り込み群方程式
4 Perelman 理論と物理学
  4.1 統計力学
  4.2 宇宙論
  4.3 最近の流れ
5 まとめ
 参考文献

第3話 リッチフローと4次元異種微分構造 (石田政司)  
2 4次元トポロジー,微分構造,リッチフロー
  2.1 4 次元微分ポアンカレ予想
  2.2 異種微分構造(エキゾチックな微分構造)
  2.3 ドナルドソン不変量とサイバーグ‐ウイッテン不変量
3 サイバーグ‐ウイッテン方程式と微分幾何学的不等式
  3.1 モノポール類
  3.2 微分幾何学的不等式
4 ペレルマン不変量と異種微分構造
  4.1 $\cal F$-汎関数,ペレルマン不変量,山辺不変量
  4.2 ペレルマン不変量の評価
  4.3 微分構造とペレルマン不変量の変化
5 異種微分構造と正規化リッチフローの非特異解
  5.1 正規化リッチフローから誘導される曲率の評価
  5.2 非特異解の存在に対する障害

385:現代数学の系譜11 ガロア理論を読む
14/03/09 08:45:21.12
こんなのがあった
URLリンク(ocw.u-tokyo.ac.jp)
学術俯瞰講義 数学を創る第12回 形の見分け方と数学の視点 坪井俊 東京大学20100114

386:現代数学の系譜11 ガロア理論を読む
14/03/09 09:50:30.46
>>384
4次元球は難しいみたい

URLリンク(en.wikipedia.org)
Exotic sphere
From Wikipedia, the free encyclopedia

4-dimensional exotic spheres and Gluck twists

In 4 dimensions it is not known whether there are any exotic smooth structures on the 4-sphere. The statement that they do not exist is known as the "smooth Poincare conjecture",
and is discussed by Michael Freedman, Robert Gompf, and Scott Morrison et al. (2010) who say that it is believed to be false.

Some candidates for exotic 4-spheres are given by Gluck twists (Gluck 1962). These are constructed by cutting out a tubular neighborhood of a 2-sphere S in S4 and gluing it back in using a diffeomorphism of its boundary S2×S1.
The result is always homeomorphic to S4. But in most cases it is unknown whether or not the result is diffeomorphic to S4. (If the 2-sphere is unknotted,
or given by spinning a knot in the 3-sphere, then the Gluck twist is known to be diffeomorphic to S4, but there are plenty of other ways to knot a 2-sphere in S4.)

Akbulut (2009) showed that a certain family of candidates for 4-dimensional exotic spheres constructed by Cappell and Shaneson are in fact standard.

387:現代数学の系譜11 ガロア理論を読む
14/03/09 10:03:47.40
関連

URLリンク(plus.maths.org)
Submitted by mf344 on January 12, 2011
Exotic spheres, or why 4-dimensional space is a crazy place
by Richard Elwes
抜粋
The weird world of four dimensions
So, is the smooth Poincare conjecture true? Most mathematicians lean towards the view that it is probably false, and that 4-dimensional exotic spheres are likely to exist.
The reason is that 4-dimensional space is already known to be a very weird place, where all sorts of surprising things happen.
A prime example is the discovery in 1983 of a completely new type of shape in 4-dimensions, one which is completely unsmoothable.

As discussed above, a square is not a smooth shape because of its sharp corners. But it can be smoothed. That is to say, it is topologically identical to a shape which is smooth, namely the circle.
In 1983, however, Simon Donaldson discovered a new class of 4-dimensional manifolds which are unsmoothable: they are so full of essential kinks and sharp edges that there is no way of ironing them all out.

Beyond this, it is not only spheres which come in exotic versions. It is now known that 4-dimensional space itself (or R4) comes in a variety of flavours.
There is the usual flat space, but alongside it are the exotic R4s. Each of these is topologically identical to ordinary space, but not differentially so. Amazingly, as Clifford Taubes showed in 1987,
there are actually infinitely many of these alternative realities. In this respect, the fourth dimension really is an infinitely stranger place than every other domain: for all other dimensions n,
there is only ever one version of Rn. Perhaps after all, the fourth dimension is the right mathematical setting for the weird worlds of science fiction writers' imaginations.

388:現代数学の系譜11 ガロア理論を読む
14/03/09 10:30:41.09
>>379
補足

P5,6辺りのお金の貸し借りの例えとか
代数の不定元の導入の例えとか
工夫が見られる

389:現代数学の系譜11 ガロア理論を読む
14/03/09 22:28:44.77
こんなのが
URLリンク(www.geocities.jp)
Ikuro's Home Page

648.2つのポアンカレ予想(その1) (13/06/06)
649.2つのポアンカレ予想(その2) (13/06/06)
650.2つのポアンカレ予想(その3) (13/06/06)
651.2つのポアンカレ予想(その4) (13/06/06)

390:現代数学の系譜11 ガロア理論を読む
14/03/10 19:57:26.77
これ買った
面白かった
受験生その他のために

URLリンク(www.amazon.co.jp)
学年ビリのギャルが1年で偏差値を40上げて慶應大学に現役合格した話 [単行本(ソフトカバー)]坪田信貴 (著) 発売日: 2013/12/26

内容紹介
一人の教師との出会いが、金髪ギャルとその家族の運命を変えた―
投稿サイトSTORYS.JPで60万人が感動した、笑いと涙の実話を全面書き下ろしで、完全版として書籍化。
子どもや部下を伸ばしたい親御さんや管理職に役立つノウハウも満載。

「ダメな人間なんて、いないんです。ただ、ダメな指導者が、いるだけなんです」

「子どもにとって、受験より大事なのは、絶対無理って思えることを、やり遂げたっていう経験なんです」

子どもや部下を急激に伸ばせる心理学テクニック&学習メソッド等も満載。

〈主な登場人物〉
【さやかちゃん】偏差値30のギャル。天然ボケ回答連発も、へらず口が得意。校則違反はするが正義感は強い。
【坪田先生(僕)】心理学等を使って、多くの生徒の短期間での偏差値上昇(20~40上昇)を請け負うカリスマ塾講師。
【ああちゃん】悲しい子ども時代の経験から、熱い子育て論を持つお母さん。一風変わった子育て法に世間の風当たりは強い
内容(「BOOK」データベースより)
一人の教師との出会いが、金髪ギャルとその家族の運命を変えた―投稿サイトSTORYS.JPで60万人が感動した、笑いと涙の実話を全面書き下ろしで、完全版として書籍化。子どもや部下を伸ばしたい親御さんや管理職に役立つノウハウも満載。

391:現代数学の系譜11 ガロア理論を読む
14/03/10 22:25:31.40
この記事面白いね

URLリンク(d.hatena.ne.jp)
2013-05-19 エキゾチックな球面 ryamada2013-05-19
■[微分幾何][トポロジー][四元数][クオータニオン][R][onion]多次元球のいろいろな張り合わせ

多次元視覚のことをやっている(こちら)
そうすると、視覚で取った情報から各点の微分に関する情報を取り出して、それによって対象を理解しようか、という話になる
じゃあ、ということで多様体上の微分のことが気になるのだが、そこには「球は球でも微分の状態が違うことがある」という話題がある
エキゾチックな球面という話である(こちら)
多次元球面ならどんなものでもエキゾチックな球面があるかというとそうでもないらしい
歴史的に最初に登場した7次元球面の話でこれをなぞってみることにする(7次元のエキゾチック球面)

今、四元数の性質から、q(x),q(y)のハミルトニアン積q(x)q(y)もやはり四元数でそのノルムが1だから
上半分の(x,y)と下半分の(x,y’)(ただしy’はハミルトニアン積(q(x)q(y)の4成分の係数が作る長さ4のベクトルとする)が1対1対応付けできる
(その貼りあわせも素直な対応関係だから微分可能で、そうすると、微分の仕方の違う球面ができる、という話)
Rでやってみよう。Rには四元数・八元数をハンドリングするonionパッケージがある(ハミルトニアン積の関数がどれだか分らなかったのであまりメリットを得ていないのだが…)
適当に回転させてその軌道が貼り合わせによって変わることをみる

392:132人目の素数さん
14/03/11 02:09:30.13
「学年ビリのギャルが1年で偏差値を40上げてSGAを読んだ話」はないのかな

393:現代数学の系譜11 ガロア理論を読む
14/03/11 08:24:31.99
SGAを読むには、数学偏差値88必要だからね・・
その話はないね

ただし、「1年で偏差値が60から80近くまで上がり東大へ行った子」の話はP295>390
「偏差値が40ぐらいから医学部へ行ったある男子」の話はP297
にある

394:現代数学の系譜11 ガロア理論を読む
14/03/16 05:48:59.01
>>391
補足
下記がよくまとまっている
URLリンク(en.wikipedia.org)

External links

Exotic sphere home page on the home page of Andrew Ranicki. Assorted source material relating to exotic spheres. URLリンク(www.maths.ed.ac.uk)

URLリンク(www.maths.ed.ac.uk)
Exotic spheres
An exotic sphere is an n-dimensional differentiable manifold which is homeomorphic but not diffeomorphic to the standard n-sphere Sn.
The articles on exotic spheres on the Wikipedia and the Manifold Atlas Project.
On manifolds homeomorphic to the 7-sphere, by J.Milnor, Ann. of Math. (2) 64, 399--405 (1956) URLリンク(www.maths.ed.ac.uk)
Hedrick Lectures on Differential Topology by J. Milnor (1965)

The structure set by A.Ranicki, Chapter 13 of Algebraic and Geometric Surgery, Oxford (2002)
Exotic spheres and curvature by M.Joachim and D.J.Wraith, Bull. A.M.S. 45, 595--616 (2008)
A minimal Brieskorn 5-sphere in the Gromoll-Meyer sphere and its applications. by C.Duran and T.Puttmann, Michigan Math. J. 56, 419--451 (2008)
On the work of Michel Kervaire in surgery and knot theory by A.Ranicki, Slides of lecture given at Kervaire memorial symposium, Geneva, 10-12 February, 2009.
Addendum Exotic spheres and the Kervaire invariant (8 May 2009)
An introduction to exotic spheres and singularities by A.Ranicki, Slides of lecture given in Edinburgh, 4 May 2012
Dusa McDuff and Jack Milnor (Somewhere in Scotland, 2011)

395:現代数学の系譜11 ガロア理論を読む
14/03/16 06:19:29.87
>>394
これもよくまとまっている

URLリンク(en.wikipedia.org)

396:現代数学の系譜11 ガロア理論を読む
14/03/16 09:04:14.20
>>391

数学者の野口 廣さんと野口 宏さん は同じ方なんですね
URLリンク(oshiete.goo.ne.jp)
野口廣】の人気Q&Aランキング
はてなブックマークに追加
1位 数学者の野口さんについて
数学というより国語力の問題なのかもしれませんが、 数学者の野口 廣さんと野口 広さんと野口 宏さん は同じ方なんですか? トポロジーとか、昔だと位相空間とかいう本を 書かれていた方です。

397:現代数学の系譜11 ガロア理論を読む
14/03/16 09:37:36.70
>>390
本の方が絶対面白い

URLリンク(storys.jp)
学年でビリだったギャルが、1年で偏差値を40あげて日本でトップの私立大学、慶應大学に現役で合格した話

398:現代数学の系譜11 ガロア理論を読む
14/03/16 10:47:13.65
>>397 この話も面白いね
URLリンク(storys.jp)
【パート3】伊達政宗をいたちせいしゅうと読み、定期テストで0点を取っていた美少女が(略)
2つの後悔
そんな僕が、これまでの講師人生で後悔している事が2つある。一つが、Y君に対して言ってしまった一言。
「君さ、カンニングをしても、大学には合格しないんだ。だから、ちゃんとカンニングせずに受けよう」
この子は、高3スタート時の偏差値が30前後の子だった。そして、基礎の学習をずーっと行って、12月頃にやっと過去問を受けた。すると、一回目の過去問でいきなり80%をとったのだ。

Y君は、「ちょ、ちょっと待って!カンニングなんかしていない」と一瞬驚きながら主張したけど、途中から黙ってしまった。
それから、2回3回と過去問の結果を持ってきたのだけれど、どんどん点数が伸びて行った。僕は、塾内の教務会議にかけて、「彼がカンニングしている現場を押さえるしかない」と主張した。

合格発表日、Y君は塾に来て、まっさきに僕の机の前に来た。
「先生、俺さ、最初に過去問やった時にめっちゃ手応えがあって、超嬉しかった。で、先生が採点してくれた時に呼ばれて、先生が険しい顔してるから、悪かったのか と思ったら、80%ってのが見えてさ
もうまじで、先生のおかげだと思って。こんなに伸びるとは思わなかったって、本当に叫びたくて、先生いつも励ましてくれてたしさ、すごく説明も適確だし、俺の苦手な事とかも把握して、全部調整してくれたし、親が批判してきた時もかばってくれて
なのに、その一番一緒に喜んでくれると思ってた人が、カンニングっていったんだぜ? まじで衝撃だったんだけど」

「もっといい点数を次にとったら認めてくれるかなって、だから頑張った。そしたらますます疑われた。絶対合格して、先生に合格通知叩き付けて、謝ってもらおうって決めたんだ。だから謝って!」
僕は、真摯に謝りました。涙が出ました。

「ありがとう。俺さ、結局、先生のおかげで、誰もが無理っていってたのに受かったの。でもさ、最後の最後に、自分が自分でやった事、疑ってどうすんの?先生もまだまだ甘いね!」そうやって、Y君は大きな笑顔を見せてくれました。
僕にとって、講師生活1年目の最後で、本当に生徒から教えてもらった瞬間でした。生徒の事を信じなくて教育って言えるのかって。

399:132人目の素数さん
14/03/16 11:16:50.99
金ないのに
なんで慶応なのかね?

400:現代数学の系譜11 ガロア理論を読む
14/03/16 11:24:11.60
金はあるみたい
1.中高一貫の女子校に行かせたんだし
2.父親は脱サラで事業を始めて、最初苦労したけど軌道に乗れば大丈夫
3.両親の仲が悪く、母親は金がないが、慶応合格したら父親が金(学資と東京の生活費など)を出したらしい
4.さらに、今回の話にはないが、ばつぐんに出来れば、奨学金という手もあるだろうし・・

401:現代数学の系譜11 ガロア理論を読む
14/03/16 11:26:13.31
>>398

>「ありがとう。俺さ、結局、先生のおかげで、誰もが無理っていってたのに受かったの。でもさ、最後の最後に、自分が自分でやった事、疑ってどうすんの?先生もまだまだ甘いね!」そうやって、Y君は大きな笑顔を見せてくれました。
>僕にとって、講師生活1年目の最後で、本当に生徒から教えてもらった瞬間でした。生徒の事を信じなくて教育って言えるのかって。

人間って潜在能力あるんだな・・

402:132人目の素数さん
14/03/16 12:47:35.15
>>390
坪田信貴さんという人の経歴どこかに出てきてたっけ?
どこの大学を出たんだろう?

403:現代数学の系譜11 ガロア理論を読む
14/03/21 06:49:25.99
>>402
詳しい経歴はないですね
URLリンク(profile.ameba.jp)
青藍義塾 塾長 坪田信貴のプロフィール|Ameba (アメーバ)

404:現代数学の系譜11 ガロア理論を読む
14/03/21 07:00:34.20
>>386
しばらく、Exotic sphere 4次元微分ポアンカレ予想にはまっていた

>The statement that they do not exist is known as the "smooth Poincare conjecture", and is discussed by Michael Freedman, Robert Gompf, and Scott Morrison et al. (2010) who say that it is believed to be false.

URLリンク(arxiv.org)
Freedman, Michael; Gompf, Robert; Morrison, Scott; Walker, Kevin (2010), "Man and machine thinking about the smooth 4-dimensional Poincare conjecture", Quantum Topology 1 (2): 171?208, arXiv:0906.5177

面白かった
Freedmanは、マイクロソフトに移っていたんだ
URLリンク(ja.wikipedia.org)

で、コンピュータパワーで、結び目理論で計算したらしい
5.3 Results
Computing the two-variable polynomial for K2 took approximately 4 weeks on a
dual core AMD Opteron 285 with 32 gb of RAM. At this point, we haven’t been
able to do the calculation for K3 . With the current version of the program, after
about two weeks the program runs out of memory and aborts.

と書いてあって、計算は完了しなかったと

405:現代数学の系譜11 ガロア理論を読む
14/03/21 07:08:13.82
>>404
>abort
URLリンク(e-words.jp)
アボート 【 abort 】
中止(する)、中断(する)、打ち切る、打ち切り、などの意味を持つ英単語。
実行中のプログラムに異常が発生した際などに、OSやユーザが強制的に処理を打ち切って終了すること。強制終了。
また、通信中に異常が生じて正常な通信を続行するのが不可能になった場合に、接続を強制的に打ち切ること。強制切断。
(引用おわり)

>dual core AMD Opteron 285 with 32 gb of RAM

いまならスパコン使うとかすれば、the calculation for K3 は完了させられると思うのだが・・

406:現代数学の系譜11 ガロア理論を読む
14/03/21 08:02:45.22
>>405

URLリンク(ja.wikipedia.org)
リーマン球面←→R2 (無限遠点を一点追加)

なので、同じことを5次元リーマン球面(S4)←→R4 (無限遠点を一点追加)
だから、R4にエキゾチックなものが存在するなら、S4にもと思ったけれど

そう単純ではないみたい
それなら、S7にエキゾチックなものが存在するなら、R7にもエキゾチックなものが存在しなければならないわけで、そうはなっていない

Exotic sphere 4次元微分ポアンカレ予想というのは、我々が日常住んでいる空間R3+時間T1の世界の理解を深める上で結構重要なのではないかと
そう思えてきました (以前は些末な問題かなと思っていたけれど)

407:現代数学の系譜11 ガロア理論を読む
14/03/21 20:17:25.11
今年のノーベル物理学賞は、これで決まりかな

URLリンク(blog.goo.ne.jp)
とね日記
昨夜の発表の感想: 宇宙誕生時の「重力波」観測 米チームが世界初
2014年03月18日 12時55分17秒 | 物理学、数学

URLリンク(planck.exblog.jp)
2014年 03月 18日
原始の重力波 その2 (大栗博司のブログ)

408:132人目の素数さん
14/03/21 20:51:22.08
royalty free music
you can use it for free. and
you can put it your own video
and monetize on youtube
URLリンク(www.youtube.com)

409:現代数学の系譜11 ガロア理論を読む
14/03/21 23:02:44.49
>>407
NHKでは、佐藤 勝彦がノーベル賞候補みたくよいしょしているが、下記を読むとちょっと甘いように思う
うまくアピールしないと厳しいだろう

URLリンク(en.wikipedia.org)
Inflation (cosmology)

Early inflationary models
Inflation was proposed in January 1980, by Alan Guth as a mechanism for resolving these problems.[41][42]
At the same time, Starobinsky argued that quantum corrections to gravity would replace the initial singularity of the universe with an exponentially expanding deSitter phase.[43]
In October 1980, Demosthenes Kazanas suggested that exponential expansion could eliminate the particle horizon and perhaps solve the horizon problem,[44]
while Sato suggested that an exponential expansion could eliminate domain walls (another kind of exotic relic).[45]
In 1981 Einhorn and Sato[46] published a model similar to Guth's and showed that it would resolve the puzzle of the magnetic monopole abundance in Grand Unified Theories.

URLリンク(ja.wikipedia.org)
佐藤 勝彦(さとう かつひこ、1945年8月30日 - )は、日本の宇宙物理学者。専門は、宇宙論。インフレーション宇宙論の提唱者として知られる。

1981年にアラン・ハーヴェイ・グースとほぼ同時期に、インフレーション宇宙論を提唱した。
この理論の最初の論文投稿者は佐藤であるが[4][5]、グースは1980年1月に佐藤と同様のインフレーションモデルをスタンフォード大学のセミナーで発表している[6]。
また、Alexei Starobinskyも1979年に同様のモデルについてのアイデアを示し[7]、1980年に論文を発表している[8]。なお、“インフレーション”という言葉を最初に用いたのはグースである[5]。
(注:佐藤の論文は、”Recieved 1980 September 9;in original form 1980 February 21”、Alan Guthは”Recieved 11 August 1980”)

410:132人目の素数さん
14/03/21 23:28:09.47
砂糖勝彦がインフレの提唱者って言ってるの日本人だけだがや
大栗も一生懸命アピールしてるけど日本語ブログでwww
ノーベルは砂糖は間違ってもない残念

411:132人目の素数さん
14/03/22 02:17:23.53
あほやなあ
インフレは幾通りもの派生があるんやで~
観測事実に一番合うやつがもらうに決まっとろうが

412:現代数学の系譜11 ガロア理論を読む
14/03/22 20:30:20.83
>>410
うーん、うまくアピールしないと、危ないだろうね
論文の投稿は、かなり早かったし、そこをアピールするしかない、いろいろな日本人が・・

>>411
>観測事実に一番合うやつがもらうに決まっとろうが

うん
独創性+ブレークスルーが重視される気がする
”観測事実に一番合う”が、些末なチューニング(ブレークスルーの後のだれでもやれる仕事)と見なされると、最初の提唱者が受賞だろう

田中耕一さんのノーベル賞が、そうだった
URLリンク(ja.wikipedia.org)
ノーベル賞受賞について

現在、生命科学分野で広く利用されている「MALDI-TOF MS」は、田中らの発表とほぼ同時期にドイツ人化学者 (Hillenkamp、Karas) により発表された方法である。
MALDI-TOF MS は、低分子化合物をマトリックスとして用いる点が田中らの方法と異なるが、より高感度にタンパク質を解析することができる。

413:現代数学の系譜11 ガロア理論を読む
14/03/29 05:50:52.37
来週は4月に突入
新年度がはじまる

今週末は桜が開花するところも多いだろう
新しくこのスレに来る人もいるんだろうな

ガロア理論の話は、過去ログにある
人それぞれのガロア理論の理解の仕方があって良いと思うんだよね

「切り口」という言葉がよく使われる。複雑な対象については、「切り口」を意図的に変えて複数の「切り口」で見る。これを意識して行う
(参考) URLリンク(diamond.jp) 「ものの見方」を変える8つの切り口 【第7回】 2012年1月17日 川村透 [川村透事務所代表・「ものの見方」コンサルタント]

ガロア理論も同じ
「切り口」を意識的に変えて複数の「切り口」で見る。これを意図して行うのが良いと思うよ

414:現代数学の系譜11 ガロア理論を読む
14/03/29 07:03:52.95
坪井俊先生>>371>>385
URLリンク(kyokan.ms.u-tokyo.ac.jp)
ここから
URLリンク(faculty.ms.u-tokyo.ac.jp)
Encounter with Mathematics
URLリンク(www.math.chuo-u.ac.jp)

415:現代数学の系譜11 ガロア理論を読む
14/03/30 23:22:13.27
K3曲面って面白いね
URLリンク(ja.wikipedia.org)
K3曲面は、複素トーラスとともに 2次元のカラビ・ヤウ多様体である。ほとんどの複素K3曲面は代数的ではない。このことは、K3曲面を多項式により定義される曲面として射影空間へ埋め込むことができないことを意味する。
Andre Weil (1958) は、これらに 3人の代数幾何学者の名前、エルンスト・クンマー(Ernst Kummer)、エーリッヒ・ケーラー(英語版)(Erich Kahler)、小平邦彦(Kunihiko Kodaira)にちなむと同時に、
(当時は未踏の山であった)カシミールの山であるK2にちなみK3曲面と名付けた。
“ Dans la seconde partie de mon rapport, il s'agit des varietes kahleriennes dites K3, ainsi nommees en l'honneur de Kummer, Kahler, Kodaira et de la belle montagne K2 au Cachemire ”
?Andre Weil (1958, p.546)の「K3曲面」という名前の理由について引用

定義
K3曲面を特徴づけることに使うことのできる多くの同値な性質がある。
完備で滑らかな自明な標準バンドルを持つ曲面は、K3曲面と複素トーラス(もしくはアーベル多様体)であるので、K3曲面を定義するために複素トーラスを場外する条件を入れることができる。曲面が単純連結であるという条件が良く使われる。

定義にはいくつかの変形があり、射影曲面に限定したり、デュヴァル特異点(英語版)(Du Val singularities)[1]を持つことを許す定義もある。

弦双対性との関係

K3曲面は、弦双対性(英語版)のほとんどの箇所に現れ、重要なツールを提供する。弦のコンパクト化(英語版)に対して、K3曲面は、自明な空間ではないが、詳細な性質のほぼ全部を解明できる空間である。
タイプ IIA 弦、タイプ IIB 弦、E8×E8 ヘテロ弦、Spin(32)/Z2 ヘテロ弦、及び M-理論は、K3曲面上のコンパクト化により関連付けらることができる。
例えば、K3曲面上へコンパクト化されたタイプ IIA 弦は、4-トーラス上へコンパクト化されたヘテロ弦に等価である。Aspinwall (1996)

416:132人目の素数さん
14/03/31 07:53:41.01
下手すると重力波に関してはグースさんにノーベル賞
を与えるかどうか不明?

417:132人目の素数さん
14/04/01 00:02:14.03
>>404
たしかフィールズ受賞者で初めて民間で働いた人だと思う
MSRはMSからあれやこれや指図されるのが少なくてかなりいい環境らしい
Tex作った人もここにいたはず

418:132人目の素数さん
14/04/01 23:20:27.33
ガロア理論は数学ガール→代数と数論の基礎→代数方程式とガロア理論で勉強したけどこのスレのオススメは何だろ

419:132人目の素数さん
14/04/02 12:32:16.65



最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch