08/11/09 01:00:19
Hence, in Fig. 1.1, the unit cell could be chosen as A for which displacements parallel to either edge of
the square by the demension of the unit cell
produce a new position which is indistinguishable, in terms of cell content and environment, from the original.
したがって、図1.1では、単位格子
The parallelogram B is also a suitable choice for the unit cell as it has the same area as A and shows the full translation symmetry.
Aと同じ面積を持ち、完全な並進対象を示しているように、平行四辺形Bもまた単位格子の適当な選択である。
Square D would also be an acceptable choice of unit cell in terms of demonstrationg the translational symmetry of the array, but is larger than A and B.
正方形Dもまた、配列の並進対称を証明できる条件のとき単位格子の選択の条件を満たしているが、AとBより大きいです。
However, parallelogram C is not a unit cell as translation parallel to one side by the length of the parallelogram places a corner originally at a ■
site on a ○ site; that is, the 'cell' does not show the translational symmetry of the ion array.
しかしながら、長さに基づく一方の平行な並進が平行四辺形の元々○の場所に■が角をみなすとき平行四辺形Cは単位格子ではありません。
すなわちセルはイオン配列の並進対称を示しません。