くだらねぇ問題はここへ書けat MATH
くだらねぇ問題はここへ書け - 暇つぶし2ch302:132人目の素数さん
18/02/19 17:30:38.54 CMze8r9t.net
>>301
つづき
1+1/(n-1)}^(n-1)<(1+1/n)^n ←②個々の計算結果がなぜそうなるのか?途中計算を詳しくお願いします。
n=1であるときは、与えられた指揮は2となるから、この極限値が2よりも大きいことh言うまでもないが、
これが4よりも小さいことを次に証明する。
まず、nを偶数とするとn=2*mとおいて、
(1+1/n)^n=(1+1/(2*m))^(2*m)={(2*m+1)/(2*m)}^(2*m)={((2*m+1)/(2*m))^m}^2
ところが、(③ここからが分かりません、何でそれぞれの右辺がこうなるのか・・・)
(2*m+1)/2*m<(2*m)/(2*m-1) , (2*m+1)/(2*m)<(2*m-1)/(2*m-2) , (2*m+1)/(2*m)<(2*m-2)/(2*m-3) , ・・・
(2*m+1)/(2*m)<(m+2)/(m+1)
であるから、これらの m-1 個の不等式くを4行以上の等式の最後の項に代入すれば、
(1+1/n)^n<{(2*m+1)/(m+1)}^2 , すなわち、 (1+1/n)^n<{2-1/(m-1)}^2<4  ←④どうゆう計算したのか?
 また、nが奇数の場合は、これを n+1 にかえると、これが偶数となり、かつ、前の証明によって、式の値も増加
するから、n の場合ももちろん4より値が小さくなる。
 この式は n の値を増すにしたがってその値が増加するが、ある限度 4 をこえることはないから、何かある一定
の極限に達する。この数を e で表しているのである。
{n=100 とおくとこの式の値は 1.01^100=2.704(対数計算による)となり、また、n=1000とおけば 1.001^1000
=2.717(対数計算による)となる。この極限値 e は実はつぎの値となる。e=2.71828188284・・・・・


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch